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Hydride transfer plays a central role in redox biochemical 
reactions.1 The pyridinium cation (Py+)-methanolate (CH3O") 
system represents a simplified, yet realistic, model of electronic 
aspects of the hydride transfer step in liver alcohol dehydrogenase 
(LADH)2 and related enzymes.3 The study of the hypersurface 
began with the reactants in a geometric arrangement similar to 
that found by X-ray crystallography.4 The transition-state 
structure (TS) 1 was obtained from a limiting procedure5 based 
on constrained energy profiles (CME).5 In this paper, we report 
some salient aspects of 1. For the CME the reactant and product 
are well defined; they correspond to the di-ionic species Py+-
CH3O" and 1,4-dihydropyridine (PyH)-formaldehyde (HCHO) 
that appear in the proposed mechanism of action in LADH.2 In 
order to get an insight into the nature of the reactants and products 
associated with 1, descents along the positive and negative di­
rections of the reaction vector (RV) were initiated by using a 
conjugated gradient method. Points 2 and 3 were reached in 
relatively flat regions of the global hypersurface (cf. Figure 1). 
1 was optimized with gradient methods, and the stationary point 
was characterized by diagonalizing the force constant matrix in 
a space of 11 internal geometric parameters,6,7 using the program 
MONSTERGAUSS8 at the 4-3IG basis set level.9 

Several features of the saddle point are revealed by the cal­
culations (cf. Table 1 and 2): 1) the syn structure is bent, with 
a C4H1C angle of 140.3°; 2) the forming C4-Ht bond is consid­
erably longer than the breaking C-Ht bond; 3) the ring is slightly 
bent into a chair form, the nitrogen and C4 are about 5.8° and 
-8.1° out of the plane f ormed by C2-C3-C5-C6, respectively; as 
C4 moves towards the alcoholate; the hydrogen bound to N1 
becomes pseudo axial as it bends to maximize H-bonding to the 
alcoholate oxygen (in a N-methylated molecule this effect is likely 
to be absent); 4) the oxygen atom has transferred ca. 50% of the 
charge; 5) the charge transfer10 to the ring is fairly large (ca. 0.5 
au), and there is a slight excess of charge on Ht; 6) there is a strong 
coupling between the transferred hydrogen position in the bridge 
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Table I. Energy, Average Gradient Length (mdyn), Geometric 
Parameters, and Net Atomic Charges for the Stationary Points 
Depicted in Figure 1° 

2 1 3 

total energy (au) 
rel energy (kcal/mol) 
gradient length (av) 
distances (A) 

PC4-Ht 
PC-Ht 

PC-C4 

Pc-o 
angles (deg) 

/C4HtC 
/OCHt 

net atomic charges (au) 
Ht 
C4 
Nl 
C 
O 
(CH2O) 

charge transfer 

-361.096234 
0.0 
1.4 X 10-3 

2.622 
1.116 
3.333 
1.376 

120.7 
113.7 

-0.01 
-0.07 
-0.81 
0.00 
-0.95 
-0.85 

0.14 

-361.074626 
13.6 
1.0 X 10-4 

1.615 
1.260 
2.707 
1.300 

140.6 
110.3 

-0.02 
-0.13 
-0.90 
0.06 
-0.78 
-0.53 

0.45 

-361.15621 
-37.7 
1.6 X 10'3 

1.091 
2.543 
3.586 
1.206 

159.6 
113.6 

0.14 
-0.32 
-0.97 
0.18 
-0.49 
0.00 

1.00 

"Charge transfer is defined with reference to the pyridynium ring; in 
the product structure 3 the ring has gained one unit of negative charge. 

Table II. Gradients (mdyn), Force Constants (mdyn/A), and 
Eigenvectors for the Unique Negative Eigenvalue and the Lowest 
Positive One in the Control Subspace" 

«, = -1.181 e2 = 0.225 
bond angle grad K C1 C2 

1 PC2-C3 + PC2-C6 0.0006 19.007 0.041 0 
2 pc_c4 0.0001 0.788 0.346 0 
3 P0-C 0.0007 7.626 0.204 0 
4 PH1-C 00008 0.763 -0.609 0 
5 /H-C4-D 0.0000 0.761 0.336 0 
6 /C-C4-D 0.0002 1.913 -0.220 0 
7 ZO-C-C4 0.0003 1.984 -0.235 0 
8 /H1H(C-O) 0.0000 3.325 -0.121 0 
9 ZH.-C-C4 0.0004 1.475 0.369 0 

10 ZO-C-C4-D 0.0002 0.225 -0.001 0.999 
11 /H 1H-(C-O-D) 0.0001 2.032 0.314 0 

" The method has been described in ref 6 and 7 and the actual pro­
cedure is summarized in ref 5. The first variable is the symmetric 
combination of bond distances PC2-C3 a n d Pc5-C6! D is a dummy atom 
located between C3 and C5. Grad is the gradient in mydn, K is the 
force constant, and C1 and C2 are the eigenvectors associated to the 
eigenvalues C1 and <2 of the force constant matrix. 

with both the intermolecular distance and orientation (cf. variable 
6 in Table 2); 7) all calculated diagonal force constants are 
positive11'12 (cf. Table 2); 8) a negative eigenvalue results from 
the cross-terms in the force constant matrix. 

Transition-state structures (TS) for model hydride reactions 
have been studied by several groups;13"15 most of them have 
predicted a linear TS for hydride transfer.13a_d The TS relevant 
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Figure 1. Schematic representation of the TS 1 which is a stationary 
point of the global energy hypersurface. Descending along the reaction 
vector with the conjugated gradient method the points 2 and 3 have been 
reached; 3 represents formic aldehyde interacting with 1,4-dihydro-
pyridine; 2 is located on a flat section of the hypersurface corresponding 
to the interaction between methanolate and pyridinium cation. However, 
not all gradients of 2 and 3 are below the threshold of 10"3 mdyn to 
qualify as stationary points. Still, they are relevant to the enzyme re­
action mechanism as they describe structures therein involved. 

to L A D H mechanism must be in the syn conformation. Wu and 
Houk have found a syn TS for systems like C H 3 0 7 H C H 0 1 3 e 

and hydride transfer from methylamine and PyH to methylen-
iminium cation.15 The latter TS 1 5 has features resembling 1 and 
some differences. The differences in structure stem from the ionic 
nature of the partners in 1. However, no TS was found with 
minimum energy profiles for hydride transfer from PyH to H C H O 
at 3-21G basis set level,15,16 while we succeeded with a limiting 
procedure.5 This situation signals one of the limitations M E 
profiles may have in finding all relevant stationary points on this 
particular hypersurface. 

Information on the reaction vector for hydride transfer in 
L A D H catalyzed reactions has been obtained experimentally by 
primary and secondary deuterium isotope effects with NAD-4-d 
and benzaldehyde-/-^ by Cleland and co-workers.17 Their results 

(16) One of the referees has pointed out that for the reaction starting from 
the ions CH3O" and Py+, a minimum energy profile does not detect a TS 
because the reaction to form free ions is much too exothermic and methanolate 
should add to C4 of Py+ without barriers. 
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suggest that the motion of the primary hydrogen being transferred 
as a hydride ion and the a-secondary hydrogens is tightly coupled 
so that motion along the RV is contributing to the observed 
secondary effect. Huskey and Schowen18 have carried out model 
vibrational analysis to explain such anomalies. These authors 
plotted RV frequencies v* vs the ratio X of the relative amplitude 
of atoms H(C4) and H, (in our nomenclature). The model 
agreeing with experiments is that one having v* = 1036i cm"1 and 
X = 0.6. 

The eigenvectors corresponding to the negative and smaller 
positive eigenvalues of the force constant matrix calculated in an 
11-parameter subspace are presented in Table II. Using data 
obtained here, a normal mode calculation19 without scaling the 
force constants yield v* = 1172i cm"1 and X = 0.7 in good 
agreement with the study by Huskey and Schowen. From the 
RV of 1 it follows that there will be changes in the secondary effect 
when the primary hydrogen will be changed from H to D, and 
vice versa, in agreement with experimental information.1718,20 

Thus, the saddle point 1 has those features required to give an 
adequate description of kinetic isotope effect observations as they 
were discussed by Huskey and Schowen.18 

In the LADH mechanism, the alcohol binds to the catalytic 
zinc and deprotonates to form an alcoholate bound to Zn. Eklund 
et al. have studied the ternary complex enzyme-NAD-p-bromo-
benzyl alcohol and proposed a productive structure,21 while 
Horjales and Branden22 have docked cyclohexanol derivatives into 
the active site of LADH and determined a productive substrate 
binding mode. The interesting point is that the coordinates of 
1 can be superimposed to those of the productive forms obtained 
from the experimental and graphics works. The root-mean-square 
deviation between the coordinates of the productive binding of 
cyclohexanol22 and those of 1 for all non-hydrogen atoms but 
oxygen is 0.1 A. In the enzyme the C-O axis is nearly parallel 
to the C4-C5 bond axis, while in our model it is parallel to the 
C4-N axis to obtain C1 symmetry. Such rotation should not affect 
the very nature of the RV. If we look at Table II, the amplitude 
on this variable controlling the syn-anti change (variable 10) in 
the RV is very small, while the following eigenvector is dominated 
by this variable.23 We notice that among the three structures 
in Figure 1, only the TS fit in the active site of LADH. This result 
illustrates Pauling's conjecture.24 
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